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Abstract
We construct a multiple star product method and, using this method, show that
integral forms of some star products can be written in terms of the path integral.
The method is applied to some examples. In particular, the associativity of the
skew-symmetrized Berezin star product proposed by Saito and Wakatsuki is
recovered in the large-N limit of the multiple star product. We also derive the
path integral form of the Kontsevich star product from the multiple Moyal star
product. This paper includes a review of star products.

PACS numbers: 11.25.-w, 02.20.-a

1. Introduction

In recent years, the relation between superstring theory and a deformation quantization has been
explored. D-branes, boundaries of open strings, are non-perturbative objects of superstring
theory. Matrix models [BFSS,IKKT] were proposed as a D-brane action a few years ago. It is
shown that a stable solution of this action is a noncommutative manifold [CDS,AIIKKT]. This
noncommutativity, however, comes from the Moyal quantization. So, this solution implies a
flat D-brane. (We have also derived a noncommutative gauge theory on a fuzzy sphere from the
matrix model [IKTW].) If we regard a D-brane as space–time, we should study the deformation
quantization of curved spaces in order to realize the quantum gravity.

In order to proceed further it is useful to clarify the mathematical background of the
deformation quantization. Star products were first introduced by Groenewold [Gr], and are
now known as Moyal products [Mo]. They associate an operator product to a noncommutative
product of functions. Here, the operators are mapped into the functions by taking account of the
Weyl ordering. Weyl ordering means a skew-symmetric definition as we will see later. Berezin
tried to quantize curved phase spaces about 25 years ago and succeeded in quantizing some
Kähler manifolds, e.g. spheres [Be]. Recently the Berezin quantization has been generalized
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to the arbitrary Kähler manifold [RT]. However the Berezin quantization is defined without
skew symmetry, and hence is not a generalization of the Moyal one.

The correlation between these methods of quantization is, however, not at all clear. In this
paper, we attempt to skew-symmetrize the Berezin quantization by means of the multiple star
product method. The multiple star products reduce to the path-integral form in the large-N
limit (see [Sh, Al] for the original ideas). As a result, our formulation becomes similar to
the path-integral form of the Kontsevich quantization which is defined perturbatively on the
Poisson manifold [Ko] but also can be described by a bosonic string path integral [CF]. In
particular, in the flat case, our star product coincides with the Kontsevich star product.

The paper is structured as follows. In section 2, we review deformation quantization, in
particular Moyal [Mo], Berezin [Be,MM] and Kontsevich [Ko,CF] quantization. In section 3,
we construct the multiple star product method and explain the symmetrized Berezin (or Wick
type) star product [SW, Ma]. We also study its associativity in detail. In section 4, we derive
the path-integral form of the Kontsevich star product on the flat plane from the multiple star
product method. Section 5 is devoted to discussion. The appendix gives some examples.

2. Deformation quantization

This section includes the definition and properties of deformation quantization. We also
briefly review Moyal, Berezin and Kontsevich quantization as examples.

2.1. General definition and property

The deformation quantization [BFFLS, St] is provided by a star product, which is defined by

f ∗ g =
∞∑
m=0

Bm(f, g)λ
m (1)

where

• λ is a deformation parameter,
• f, g ∈ A = C∞(M)[[λ]], where C∞(M)[[λ]] means that the coefficients of the λ power

series are C∞ functions on M ,
• Bm are bi-differential operators (Bm : A× A→ A).

The deformation quantization has the following properties:

(1) associativity

f ∗ (g ∗ h) = (f ∗ g) ∗ h. (2)

(2) m = 0

B0(f, g) = fg. (3)

(3) m = 1

B1(f, g)− B1(g, f ) = {f, g} = 2
∑
i,j

αij ∂if ∂jg (4)

where i, j = 1, 2, . . . , d = dim(M) and {·, ·} is a Poisson bracket which satisfies

{f, {g, h}} + {g, {h, f }} + {h{f, g}} = 0 (5)

so the skew-symmetric bivector field α satisfies

αil∂lα
jk + αjl∂lα

ki + αkl∂lα
ij = 0. (6)



Symmetrization of the Berezin star product and multiple star product method 7703

Table 1.

Manifold Flat plane Kähler Poisson

Quantization Moyal Berezin Kontsevich

Symbol � �� ∗
m = 1 skew-symmetric asymmetric skew-symmetric

It can be shown that one or more star products determined by (2)–(4) exist. The deformation
quantization has the following equivalence, called a gauge equivalence. ∗ and ∗′ are identified
if

f ′ ∗′ g′ = D(f ∗ g) (7)

where f ′ = D(f ), g′ = D(g) and D is a differential operator (D : A → A). However, we
can take two simple gauges. One is the skew-symmetric gauge

B1(f, g) = 1
2 {f, g} =

∑
i,j

αij ∂if ∂jg. (8)

The other gauge is

B1(f, g) =
∑
i,j

βij ∂if ∂jg (9)

where β is the upper triangle matrix of α which satisfies αij = βij − βji . So we call the star
products determined by (8) and (9) the skew-symmetric and asymmetric products respectively.
We have three concrete examples of deformation quantization, as shown in table 1.

From now on we consider real two-dimensional manifolds for the sake of simplicity.

2.2. Moyal quantization

The Poisson bracket on the flat plane is defined by

{f, g} =
∑
i,j

εij ∂if ∂jg = ∂xf ∂pg − ∂pf ∂xg. (10)

Thus αij = εij /2 by (4). So we obtain the associative star product on the flat plane, i.e. the
Moyal star product, as

f � g(x, p) = f (x, p)e
λ
2 (
←−
∂x
−→
∂p−
←−
∂p
−→
∂x )g(x, p)

= fg + λ 1
2 {f, g} + O(λ2). (11)

This star product agrees with equations (3) and (8), and satisfies the associativity from the
following results:

e1 � (e2 � e3) = e−
λ
2 (m1n2+m2n3+n3m1−n1m2−n2m3−m3n1)e1e2e3 = (e1 � e2) � e3 (12)

where the ei are the Fourier series

ei = ei(mix+nip).

Here we require the usual canonical commutation relation

[x, p]� = x � p − p � x = ih̄ (13)

so that we obtain λ = ih̄. This star product can also be written in the integral form [Ba],
because we have the following relations:

ei(mx+np) � ei(m′x+n′p) = e−
ih̄
2 (mn

′−m′n)ei(mx+np)ei(m′x+n′p) (14)
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and∫
dw dη

πh̄

dw′ dη′

πh̄
e

2i
h̄
Sei(mw+nη)ei(m′w′+n′η′) = e−

ih̄
2 (mn

′−m′n)ei(mx+np)ei(m′x+n′p) (15)

where

S =
∣∣∣∣∣

1 1 1
x w w′

p η η′

∣∣∣∣∣ .
The left-hand sides of equations (14) and (15) are equivalent, so that we obtain the integral
form of the Moyal star product after multiplying arbitrary Fourier coefficients and integrating
over m, n as

f � g(x, p) =
∫

dw dη

πh̄

dw′ dη′

πh̄
e

2i
h̄
Sf (w, η)g(w′, η′). (16)

2.3. Berezin quantization

The Poisson bracket on the Kähler manifold is given as

{f, g} = 2

i
hzz̄(∂zf ∂z̄g − ∂z̄f ∂zg) (17)

where hzz̄ is the inverse of a Kähler metric

hzz̄ = ∂z∂z̄K(z, z̄)

and K(z, z̄) is a Kähler potential. The factor 2
i in equation (17) is necessary in order that

the Poisson bracket becomes equation (10) in the flat case. The original Berezin quantization
covers only the Ricci flat Kähler manifold. The Berezin star product is defined by

f �� g(z, z̄) =
∫

dµν(v, v̄)e
1
ν
'(z,z̄,v,v̄)f (z, v̄)g(v, z̄) (18)

where '(z, z̄, v, v̄) is called the Calabi function and defined by the Kähler potential as

'(z, z̄, v, v̄) = K(z, v̄) + K(v, z̄)−K(z, z̄)−K(v, v̄) (19)

and the measure dµν is determined by the metric as

dµν(z, z̄) = hzz̄
i dz ∧ dz̄

2πν
. (20)

This star product can be expanded around λ = ν/2i = 0 as follows:

f �� g(z, z̄) = fg + λ(B+
1 (f, g) + B−1 (f, g)) + O(λ2) (21)

where B+
1 and B−1 are a symmetric part and a skew-symmetric part respectively,

B+
1 = 2iAfg − 1

2 {f, g}+ B−1 = 1
2 {f, g} (22)

and

A = 1
2h

zz̄∂z∂z̄ loghzz̄ {f, g}+ = 2

i
hzz̄(∂zf ∂z̄g + ∂z̄f ∂zg).

If the manifold M is the Kähler manifold, A = 0 [RT]. Thus (3) and (4) are satisfied. The
associativity is written as

((f �� g)�� h)(z, z̄) =
∫

dµν(v, v̄) dµν(u, ū)f (z, v̄)g(v, ū)h(u, z̄)e
1
ν
('(z,ū,v,v̄)+'(z,z̄,u,ū))

(f �� (g�� h))(z, z̄) =
∫

dµν(v, v̄) dµν(u, ū)f (z, v̄)g(v, ū)h(u, z̄)e
1
ν
('(v,z̄,u,ū)+'(z,z̄,v,v̄)).

The Calabi function clearly satisfies

'(z, ū, v, v̄) + '(z, z̄, u, ū) = '(v, z̄, u, ū) + '(z, z̄, v, v̄)

so the associativity is

((f �� g)�� h)(z, z̄) = (f �� (g�� h))(z, z̄). (23)
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2.4. Kontsevich quantization

The Kontsevich quantization covers the Poisson manifold (M) which is a general manifold with
the Poisson structure. Kontsevich perturbatively solved Bm(f, g) under the conditions (2), (3)
and (8) as

Bm(f, g) =
∑
)∈Gm

w)B)(f, g) (24)

where Gm is a set of diagrams related to the number m, B)(f, g) is a bi-differential operator
determined by the Feynman diagram and ω) is a weight [Ko]. Thus Kontsevich defines the
star product on the Poisson manifold by a formal power series of λ as

f ∗ g =
∞∑
m=0

λm
∑
)∈Gm

w)B)(f, g). (25)

Cattaneo and Felder have also shown that the Kontsevich star product (25) coincides with the
path-integral form of a topological bosonic string (nonlinear sigma model):

f ∗ g(x) =
∫
X(∞)=x

f (X(1))g(X(0))e
i
h̄
S[X,η]DXDη (26)

where the action is defined on a disc D as

S[X, η] =
∫
D

ηi(u) ∧ dXi(u) + 1
2α

ij (X(u))ηi(u) ∧ ηj (u)

and

• D = {u ∈ R2 , |u| � 1},
• X and η are real bosonic fields,
• X : D→ M ,
• η is a differential 1-form on D : X∗(T ∗M)⊗ T ∗D.

In the symplectic case, the action can be integrated over η and becomes a boundary integration
by the Stokes theorem as

f ∗symp g(x) =
∫
γ (±∞)=x

f (γ (1))g(γ (0))e
i
h̄

∫
γ

d−1ω dγ (27)

where γ is a loop trajectory from x to x.

3. Symmetrized Berezin star product

In this section, we first explain the multiple star product method. Next we define the S-star
product to clarify the relationship between Moyal and Berezin quantization. However, the
S-star product is not associative in curved space. So, using the multiple star product method,
we derive an associative star product, i.e. the O-star product.

3.1. Multiple star product method

Generally, the integral forms of the star products can be written as

f � g(α) =
∫

dµλ(β, γ ) eKλ(α,β,γ )f (β)g(γ ) (28)
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where α, β, γ ∈ M , Kλ = K/λ is an integral kernel and dµλ = dµ/λ2 is a measure which
relates two points on M . We assume that this star product � satisfies the following:

f � g = fg + λ
{f, g}

2
+ O(λ2) (29)

f � 1 = 1 � f = f (30)

dµλ(β, γ ) = dµλ(γ, β). (31)

We also add an assumption Kλ(α, β, β) = 0. Note that we do not require this star product �
to be associative. We call this product � the non-associative star product.

Next we define the multiple star product of � as

AN(f ) = fN/N � fN−1/N � · · · � f2/N � f1/N . (32)

An equivalence of the forward product
←−
A

N
and the backward product

−→
A

N
is necessary at

least in order that AN is well defined where
←−
A

N
(f ) := (fN/N � (fN−1/N � (· · · � (f1/N � 1) · · ·)))

=
∫ ( N∏

i=1

dµλN(βi/N , γi/N)fi/N(βi/N)

)
exp

N∑
i=1

1

N
Kλ(γi+1/N , βi/N , γi/N)

(33)
−→
A

N
(f ) := (((· · · (1 � fN/N) � · · ·) � f2/N) � f1/N)

=
∫ ( N∏

i=1

dµλN(βi/N , γi/N)fi/N(βi/N)

)
exp

N∑
i=1

1

N
Kλ(γi−1/N , γi/N , βi/N)

(34)

α = β0 = βN+1/N = γ0 = γN+1/N . (35)

Note that we change the deformation parameter λ to λN . From this equivalence, we obtain
a condition

1

N

N∑
i=1

(Kλ(γi+1/N , βi/N , γi/N)− Kλ(γi−1/N , γi/N , βi/N)) = 0. (36)

Using the boundary condition (35) and the additional condition K(α, β, β) = 0, this
condition (36) is also deformed as

1

N

N∑
i=0

(Kλ(γi+1/N , βi/N , γi/N)− Kλ(γi/N , γi+1/N , βi+1/N)) = 0. (37)

This condition corresponds to the associativity condition in the case of fi/N = 1 except for

three fi/N . We denote AN(f ) :=←−AN
(f ) = −→AN

(f ) when Kλ satisfies equation (37).

3.2. Relationship between the Moyal and Berezin star products

The Berezin star product in the flat case coincides with the Moyal one except for skew-symmetry
or asymmetry. This difference is explained as follows. First, we write the Moyal star product
in complex variables to make clear the correspondence with the Berezin star product:

f � g(z, z̄) = f (z, z̄)eh̄(
←−
∂z
−→
∂z̄ −
←−
∂z̄
−→
∂z )g(z, z̄) (38)

where z = x + ip. This star product is gauge equivalent (7) to �st and �ar where

�st = e2h̄
←−
∂z
−→
∂z̄ and �ar = e−2

←−
∂z̄
−→
∂z (39)



Symmetrization of the Berezin star product and multiple star product method 7707

because the gauge equivalent condition is satisfied in the case of

D = eh̄
←−
∂z
−→
∂z̄ and D = e−h̄

←−
∂z̄
−→
∂z (40)

respectively [Vo, Be, APS]. Thus we obtain a star product relation,

� = (�st�ar)
1
2 . (41)

Here �
1
2
st and �

1
2
ar can be written in integral form [APS] as

f �
1
2
st g(z, z̄) =

∫
i dw ∧ dw̄

2πθ
e

1
θ
|w−z|2f (w, z̄)g(z, w̄)

f �
1
2
ar g(z, z̄) =

∫
i dv ∧ dv̄

2π(−θ) e−
1
θ
|v−z|2f (z, v̄)g(v, z̄)

(42)

where θ = −h̄. Thus we obtain

f � g(z, z̄) = −
∫

i dv ∧ dv̄

2πθ

i dw ∧ dw̄

2πθ
e

1
θ
(−|v−z|2+|w−z|2)f (w, v̄)g(v, w̄). (43)

The star products (42) are two types of the Berezin star product on the flat plane, i.e. the term
−|v−z|2 is the Calabi function on the flat plane. Taking this result into account, we generalize
the Moyal star product � to the S-star product on the Ricci flat Kähler manifold ([Ma] argues
that the S-star product may be available to the general Kähler manifold), which is defined by

f �� g(z, z̄) :=
∫

dµθ(v, v̄) dµ−θ (w, w̄)

× exp
1

θ
('(z, z̄; v, v̄)−'(z, z̄;w, w̄))f (w, v̄)g(v, w̄) (44)

where dµθ(z, z̄) = hzz̄i dz ∧ dz̄/2πθ , similarly to (20). However, this star product is not
associative unless flat. This complication is overcome by using the multiple star product
method.

3.3. Associativity of symmetrized Berezin star product

In this section, we attempt to recover the associativity of the S-star product. First, we show
that the S-star product is a non-associative star product. In the case of the S-star product, we
know the following correspondence:

α = (z, z̄) β = (w, v̄) γ = (v, w̄) (45)

λ = θ dµλ(β, γ ) = dµθ(v, v̄) dµ−θ (w, w̄) (46)

Kλ(α, β, γ ) = 1

θ
('(z, z̄; v, v̄)−'(z, z̄;w, w̄)). (47)

Thus the S-star product clearly satisfies the conditions (31) and Kλ(α, β, β) = 0. Also, it is
shown in [Ma] that this product satisfies the conditions (29) and (30).

Next, we assess whether the S-star product satisfies condition (37) or not. In the S-star
product, the left-hand side of (37) is written in terms of the Kähler potential K as

lhs = 1

θ

1

N

N∑
i=0

(K(vi+1/N , v̄i/N ) + K(vi/N , v̄i+1/N)− 2K(vi/N , v̄i/N ))

−(K(wi+1/N , w̄i/N ) + K(wi/N , w̄i+1/N)− 2K(wi/N , w̄i/N )). (48)

This result is non-zero but becomes zero in the large-N limit as

lhs→ 1

θ

∫ 1

0
dτ d(K(v, v̄)−K(w, w̄)) = 0 (49)
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where v,w = v(τ), w(τ) and the boundary conditions (35) become

v(0) = v(1) = w(0) = w(1) = z

v̄(0) = v̄(1) = w̄(0) = w̄(1) = z̄.
(50)

Thus AN(f ) is ill-defined but A(f ) = limN→∞AN(f ) is well defined. We call this star
product a pseudo-associative product. By using A(f ) and

fi/N =



g (i/N = i1/N → τ1)

f (i/N = i2/N → τ2)

1 (i/N → τ �= τ1, τ2)

(51)

we construct an associative star product ©� in terms of the path integral form as

f©� g(z, z̄) := A(f )

= · · · 1�� 1�� f �� 1�� 1 · · · 1�� 1�� g�� 1�� 1 · · ·

= lim
N→∞

∫ N∏
i=1

dµθN(vi/N , v̄i/N ) dµ−θN (wi/N , w̄i/N )

× exp

[
i

θ
Si

]
f (vi2/N , w̄i2/N)g(vi1/N , w̄i1/N)

=
∫

Dµθ(v, v̄)Dµ−θ (w, w̄) exp

[
i

θ
S

]
f (v(τ2), w̄(τ2))g(v(τ1), w̄(τ1)) (52)

where actions are written as follows:

Si = 1

i

1

N

N∑
i=1

('(vi+1/N , w̄i+1/N ; vi/N , v̄i/N )−'(vi+1/N , w̄i+1/N ;wi/N , w̄i/N )) (53)

S = 1

i

∫ ∞
−∞

[
(ψ(v, v̄)− ψ(v, w̄)) ∂v

∂τ
− (ψ̄(w, w̄)− ψ̄(v, w̄)) ∂v̄

∂τ

]
dτ (54)

and the path integral measure is defined by

Dµθ(v, v̄) := lim
N→∞

N∏
i=1

dµθN(vi/N , v̄i/N ). (55)

Note that ψ(z, z̄) is a canonical conjugation of z, which is defined by

ψ(z, z̄) := ∂K(z, z̄)

∂z
. (56)

As above, the associative symmetrized Berezin star product is defined as the O-star product
correctly. The associativity is satisfied as illustrated in figure 1.

4. Construction of Kontsevich star product from multiple star product method

In this section, we show that the multiple Moyal star product corresponds to the path-integral
form of the Kontsevich star product on the flat plane. Preparatory to this derivation, we write
the multiple Moyal star product in the large-N limit as

A�(f ) := lim
N→∞

fN/N(x, p) � fN−1/N(x, p) � · · · � f2/N(x, p) � f1/N(x, p)
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Figure 1. If we denote the O-star product by a circle, the associativity is shown as above. Here ◦
point means the boundary of the O-star product as (z, z̄).

= lim
N→∞

∫ N∏
i=1

dξi/N dηi/N
πh̄N

dξ ′i/N dη′i/N
πh̄N

fi/N(ξi/N , ηi/N)

× exp

[
2i

h̄N

N∑
i=1

∣∣∣∣∣
1 1 1

ξ ′i+1/N ξi/N ξ ′i/N
η′i+1/N ηi/N η′i/N

∣∣∣∣∣
]

=
∫

DξDηDξ ′Dη′
1∏

τ=0

f (τ ; ξ, η)

× exp
2i

h̄

∫ 1

0
dτ

[
dξ ′

dτ
(η − η′)− (ξ − ξ ′)dη′

dτ

]
(57)

where real fields ξ, η, ξ ′, η′ have boundary conditions

x = ξ(0) = ξ(1) = ξ ′(0) = ξ ′(1)
p = η(0) = η(1) = η′(0) = η′(1)

(58)

and functional measures are defined as follows:

Dξ := lim
N→∞

N∏
i=1

dξi/N
π ∂a

∂r
N
, . . . etc. (59)

In equation (57), we can integrate out ξ ′, η′ by using partial integration and obtain the simplified
form

A�(f ) =
∫

DξDη
1∏

τ=0

fτ (ξ(τ ), η(τ )) exp
i

h̄

∫ 1

0
η
∂ξ

∂τ
dτ . (60)

Here we can change the integration area of τ (0, 1) to (−∞,∞) by a reparametrization of τ .
Thus equation (60) and the boundary conditions (58) are changed as

A�(f ) =
∫

DξDη
∞∏

τ=−∞
fτ (ξ(τ ), η(τ )) exp

i

h̄

∫ ∞
−∞

η
∂ξ

∂τ
dτ , (61)

x = ξ(±∞) = ξ ′(±∞) p = η(±∞) = η′(±∞). (62)
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Next, using (61), we show that the multiple Moyal star product is included in the path-integral
form of the Kontsevich star product (27). If we put

fτ (x, p) =



f (x, p) (τ = 1)

g(x, p) (τ = 0)

1 (τ �= 0, 1)

(63)

then

f � g(x, p) = A�(f )

= lim
N→∞

· · · � 1 � f (x, p) � 1 � · · · � 1 � g(x, p) � 1 � · · ·

=
∫

DξDη f (ξ(1), η(1))g(ξ(0), η(0)) exp
i

h̄

∫
γ

d−1ω0 (64)

where

d−1ω0 := (dξ)η = η
dξ

dτ
dτ (65)

and

ω0 = d(d−1ω0) = dξ ∧ dη. (66)

Equation (64) corresponds to (27) on the flat plane.

5. Discussions

In this paper, we have proposed a multiple star product method. It is useful for constructing
associative star products from pseudo-associative star products. We have shown that a pseudo-
associative S-star product becomes an associative O-star product by using the multiple star
product method. This is explained as follows. Although the pseudo-associative products
break the associativity condition a little, the multiple star product method, which is a set of
infinite pseudo-associative products, smooths and overcomes this risk and the associativity
condition (37) is satisfied. In consequence, the pseudo-associative product turns into an
associative product within the framework of the path-integral formalism.

The multiple star product method also has been applied to well known associative products
such as the Moyal star product. The multiple Moyal star product coincides with the path-
integral form of the Kontsevich star product on the flat plane. This result demonstrates the
validity of the multiple star product method.

Appendix. Other examples

By using equation (61), we can obtain the transition amplitude in quantum dynamics and the
bosonic string generating function. If we put in equation (61)

fτ (x, p) =



ψI (x) (τ = tI )

ψ̄F (x) (τ = tF )

e−
i
h̄
H (x,p) (tI < τ < tF )

1 (τ < tI , tF < τ)

(67)

we obtain

A�(f ) = lim
N→∞

· · · � 1 � ψ̄F (x) � e−
iε
h̄
H(x,p) � · · · � e−

iε
h̄
H(x,p) � ψI (x) � 1 � · · ·

=
∫

DξDη ψ̄F (ξ(tF ))ψI (ξ(tI ))e
i
h̄

∫ tF
tI
(η

∂ξ

∂τ
−H(ξ,η)) dτ

= 〈ψF , tF |ψI , tI 〉 (68)
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where integration of τ < tI , tF < τ vanishes because of f (τ ; x, p) = 1.
Next, a bosonic string generating function can be derived from infinite-dimensional

multiple Moyal star products. In (61), we put

fτ (x, p) = ei(k(τ )x+m(τ)p) (69)

and obtain

A�(f ) = lim
N→∞

ei(k(∞)x+m(∞)p) � · · · � ei(k(0)x+m(0)p) � · · · � ei(k(−∞)x+m(−∞)p)

=
∫

DξDη e
i
h̄

∫∞
−∞(η

∂ξ

∂τ
+h̄(kξ+mη)) dτ . (70)

Here, we generalize x → xn,µ , p → p
µ
n where n runs from 0 to∞ and µ runs from 1 to

dimension d . n can be changed to continuous parameter σ by the following definitions and
relation:

xµ(σ ) :=
∞∑
n=0

xn,µ cos nσ pµ(σ ) :=
∞∑
n=0

p
µ
n

n
sin nσ

∞∑
n=0

xn,µp
µ
n = 2

∫ 2π

0
xµ
∂pµ

∂σ
dσ.

Substituting the above relation into Amn, we obtain

A�(f ) =
∫

DX exp

[
2i

h̄

∫ ∞
−∞

dτ
∫ 2π

0
dσ

(
∂Xµ

∂σ

∂Xµ

∂τ
+ JµXµ

)]

Xµ = ξµ + ηµ√
2

Jµ = h̄

(
∂nµ

∂σ
− ∂mµ

∂σ

)
DX = DξDη.

(71)

A�(f ) becomes the bosonic string generating function. Further details can be found in [SW].
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